COURSE OUTLINE

1. GENERAL

SCHOOL:	Engineering			
ACADEMIC UNIT:	Industrial Design and Production Engineering			
LEVEL OF STUDIES:	Undergraduate			
COURSE CODE:	2003	SEMESTER 2		
COURSE TITLE:	Algorithms and Data Structures			
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	ECTS CREDITS	
Theory (Lectures)			3	3
Laboratory			1	2
			4	5
COURSE TYPE:	General knowledge			
PREREQUISITES COURSES:	No			
LANGUAGE OF INSTRUCTION and	Greek			
EXAMINATIONS:				
IS THE COURSE OFFERED TO	Yes			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/IDPE111/			

2. LEARNING OUTCOMES

Learning Outcomes

Upon completion of the course students will have:

- 1. Familiarity with the concepts of algorithms
- 2. Algorithm analysis skills
- 3. Knowledge of basic and secondary data structures

In detail, students will be able to:

- 1. Analyze and design algorithms.
- 2. Implement data structures in C++
- 3. Select the appropriate data structures for each algorithm
- 4. Implement the basic algorithms in C++

General Competences

- 1. Search, analysis and synthesis of data and information, using the necessary technologies
- 2. Adaptation to new situations
- 3. Decision making
- 4. Production of new research ideas
- 5. 5. Promoting free, creative and inductive thinking

3. SYLLABUS

The course Algorithms and Data Structures deals with the basic concepts of algorithms and data structures.

Algorithms:

- Brute Force
- Divide and Conquer
- Greedy Algorithm
- Algorithm analysis

Data structures:

- Tables, Lists, Stacks, Queues,
- Static-Dynamic Trees
- Binary Trees

4. TEACHING and LEARNING METHODS – EVALUATION

DELIVERY	In-class face-to-face		
	Lectures		
	Practice exercises		
	Laboratories		
	Assignments & Presentations		
USE OF INFORMATION AND	• Use of ICTs in theoretical teaching and use of ICTs in		
COMMUNICATION TECHNOLOGY	lecturing		
	 Use of ICTs in laboratory-based training 		
	• Use of ICTs for the communication with students via the		
	e-class platform		
	 Specialised software tools for experimentation 		
	• Support of the educational process via the e-class		
	platform		
TEACHING METHODS	Method description /		
	Activity	Semester Workload	
	Lectures	39	
	Laboratory work	36	
	Laboratory work Non-guided personal study	36 75	
	Non-guided personal study	75	
	Non-guided personal study Course Total (30h/ECTS)		
STUDENT PERFORMANCE	Non-guided personal study Course Total (30h/ECTS) Language of Assessment	75	
STUDENT PERFORMANCE EVALUATION	Non-guided personal study Course Total (30h/ECTS) Language of Assessment Greek	75	
	Non-guided personal study Course Total (30h/ECTS) Language of Assessment Greek Description	75	
	Non-guided personal study Course Total (30h/ECTS) Language of Assessment Greek	75	

 Written examination with short answer questions (Concluding) 		
 Written exams with multiple choice questions (Concluding) 		
 Written assignment (Formative) 		
 Laboratory/project work (Formative) 		
 The final grade of the course consists of: Final written examination in the entire theoretical content (80%), Elaboration of laboratory-based work (20%). 		
The assessment criteria are announced to students at the beginning of the semester and are published on the course webpage in the e-Class platform.		

5. ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Algorithms, Edmonds Jeff, Publications: Kritiki
- Quantitative Methods and Applications, Ch.Fountas, Ch.Drosos, Publications: Varvarigou
- C: From Theory to Application, Tselikis, Tselikas, Publications: G.Tselikis
- Introduction to Algorithm Analysis and Design, AnanyLevitin, Jiola Publications
- Introduction to Object-Oriented Programming, Sgouropoulou, Troussas,