COURSE OUTLINE

(1) **GENERAL**

SCHOOL	Enginooring			1
	Engineering			
ACADEMIC UNIT	Industrial Design and Production Engineering			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	1002		SEMESTER	1
COURSE TITLE	General Physics			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS
Lectures			3	4
Laboratory			1	1
			4	5
COURSE TYPE	General back	ground		
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	No			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/IDPE185/			

(2) LEARNING OUTCOMES

Learning outcomes

The course belongs to Level 6 of the European Qualifications Framework. Therefore, upon completion of the course students will have:

- Thorough knowledge and critical understanding of the basic principles and laws of Physics (in issues of engineering, waves and thermodynamics) and will have acquired a knowledge base that is necessary for attending Technology courses and in general monitoring the evolution of modern technology.
- Knowledge and skills in handling simple relations of differential and integral calculus to calculate physical quantities (position, velocity, acceleration, energy, power, torque, heat, etc.) to predict the behavior of physical quantities, to compare and draw conclusions.
- Knowledge and skills in using the methods and the most basic techniques of Experimental Physics.
- Ability to operate measuring devices to take measurements, process them, evaluate them and correlate physical quantities.

In detail, students will be able to:

- Calculate physical quantities (position, velocity, acceleration, energy, power, torque, etc.).
- Predict the behavior of physical quantities, and select the appropriate parameters to achieve the desired behavior.
- Operate instruments and experimental devices for measuring physical quantities.
- To take measurements autonomously, to process them, to correlate physical quantities as well as to calculate or estimate errors. To decide if their measurements are within the framework of experimental uncertainties or if there is a systematic error in part or the whole experimental setup.

General Competences

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Working in an interdisciplinary environment
- Production of new research ideas
- Production of free, creative and inductive thinking

(3) SYLLABUS

The course also includes a laboratory part, where they are designed, solved issues of:

- Introduction System of Units, Accuracy Significant Digits, Reference Systems, Elements of Differential and Integral Calculus.
- Vectors Motion in one and two dimensions, Relative motion, Galilean Transformations.
- Material point dynamics, Newton's laws.
- Momentum, Work, Power, Energy, Conservation of Energy.
- Kinematics and Dynamics of Rotational Motion, Torque, Rotation, Moment of Inertia, examples applications, correspondences of physical quantities between Translational and Rotary Motion, Rolling, work-energy theorem for rotational motion applications. Connection of natural quantities with sensor technology.
- Equilibrium and Elasticity Young Measure.
- Fields of forces gravitational field, satellites, Kepler Laws.
- Oscillations differential equations of oscillating systems, correspondences between mechanical and electrical systems.
- Mechanical Waves, differential wave equation, Sound, Wave superposition, wave properties applications. Introduction to electromagnetic waves. Applications.
- Temperature, Heat Dissipation, Thermal properties of matter, correspondences between mechanical, electrical, magnetic and thermal systems. Laws of Thermodynamics, applications.

A series of laboratory exercises on Mechanics - Heat.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face and distance learning.			
ANDCOMMUNICATIONS	ICT is used in both parts of the course, theoretical and laboratory, both for teaching and for communicating with			
TECHNOLOGY TEACHING METHODS	Activity	Semester workload		
	Theoretical part with Lectures	39		
	Laboratorial part with	33		
	Exercises and practical applications			
	Individual study	78		
	Course Total (30h/ECTS)	150		

STUDENT PERFORMANCE EVALUATION	Language of Assessment: Greek
	The assessment of students is done with written exams at the end of the semester that include theory questions in various forms (e.g., multiple choice, short answer, filling in the gap, etc.) as well as exercises that require detailed problem solving.
	Final written exam: 80%
	Laboratory work/exercises: 20%
	The assessment criteria are announced to the students at the beginning of the semester and are posted on the course's website in eClass.

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Κωνσταντινίδης Σ., Ντρίβας Ν. & Πρελορέντζος Λ.: «Φυσική Ι: Μηχανική & Σύγχρονη Φυσική», Πανεπιστημιακές Εκδόσεις «Αράκυνθος», Αθήνα 2007 (Εύδοξος: 1358).
- 2. Η.D. YOUNG: «Πανεπιστημιακή Φυσική» Α Τόμος, Εκδόσεις ΠΑΠΑΖΗΣΗ (Εύδοξος: 68387875).
- 3. R.Serway : «Φυσική για Επιστήμονες και Μηχανικούς» Α΄ΤΟΜΟΣ) (Εύδοξος: 22750100).
- 4. Halliday-Resnick-Walker: «Φυσική » Α Τόμος, Εκδόσεις Gutenberg (Εύδοξος: 33074351).

- Related academic journals:

- 1. Solid-State Physics, Elsevier
- 2. Applied Physics A
- 3. Applied Physics B
- 4. Institute of Physics